Scale Invariant Feature Transform: Unveiling the Power of Scale Invariant Feature Transform in Computer Vision

· Computer Vision 第 39 冊 · One Billion Knowledgeable
電子書
114
符合資格

關於本電子書

What is Scale Invariant Feature Transform

SIFT, which stands for scale-invariant feature transform, is a method for computer vision that was developed by David Lowe in 1999. Its purpose is to identify, describe, and coincide with local features in images. Object recognition, robotic mapping and navigation, picture stitching, three-dimensional modeling, gesture recognition, video tracking, individual identification of wildlife, and match moving are some of the applications that can be used.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Scale-invariant feature transform


Chapter 2: Edge detection


Chapter 3: Scale space


Chapter 4: Gaussian blur


Chapter 5: Feature (computer vision)


Chapter 6: Corner detection


Chapter 7: Affine shape adaptation


Chapter 8: Hessian affine region detector


Chapter 9: Principal curvature-based region detector


Chapter 10: Oriented FAST and rotated BRIEF


(II) Answering the public top questions about scale invariant feature transform.


(III) Real world examples for the usage of scale invariant feature transform in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Scale Invariant Feature Transform.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。

繼續瀏覽系列叢書

Fouad Sabry的其他著作

同類型電子書