Storage Systems: Organization, Performance, Coding, Reliability, and Their Data Processing

· Academic Press
eBook
746
페이지
적용 가능

eBook 정보

Storage Systems: Organization, Performance, Coding, Reliability and Their Data Processing was motivated by the 1988 Redundant Array of Inexpensive/Independent Disks proposal to replace large form factor mainframe disks with an array of commodity disks. Disk loads are balanced by striping data into strips—with one strip per disk— and storage reliability is enhanced via replication or erasure coding, which at best dedicates k strips per stripe to tolerate k disk failures. Flash memories have resulted in a paradigm shift with Solid State Drives (SSDs) replacing Hard Disk Drives (HDDs) for high performance applications. RAID and Flash have resulted in the emergence of new storage companies, namely EMC, NetApp, SanDisk, and Purestorage, and a multibillion-dollar storage market. Key new conferences and publications are reviewed in this book.The goal of the book is to expose students, researchers, and IT professionals to the more important developments in storage systems, while covering the evolution of storage technologies, traditional and novel databases, and novel sources of data. We describe several prototypes: FAWN at CMU, RAMCloud at Stanford, and Lightstore at MIT; Oracle's Exadata, AWS' Aurora, Alibaba's PolarDB, Fungible Data Center; and author's paper designs for cloud storage, namely heterogeneous disk arrays and hierarchical RAID. - Surveys storage technologies and lists sources of data: measurements, text, audio, images, and video - Familiarizes with paradigms to improve performance: caching, prefetching, log-structured file systems, and merge-trees (LSMs) - Describes RAID organizations and analyzes their performance and reliability - Conserves storage via data compression, deduplication, compaction, and secures data via encryption - Specifies implications of storage technologies on performance and power consumption - Exemplifies database parallelism for big data, analytics, deep learning via multicore CPUs, GPUs, FPGAs, and ASICs, e.g., Google's Tensor Processing Units

저자 정보

Dr. Alexander Thomasian is the founder and CEO of Thomasian Associates consulting, in Pleasantville, NY, USA. As a former IBM Systems Engineer, he did a PhD in Computer Science at UCLA. Dr. Thomasian has held teaching and research positions at Case Western Reserve U., U. Southern California, Burroughs Corp., IBM T.J. Watson Research Center, and New Jersey Institute of Technology. At IBM's Almaden Research Center, he developed the analysis to predict the performance of IBM's RAID5 product under development. His storage research was funded by National Science Foundation Hitachi Global Storage Technologies, and AT&T. He was a visiting scientist of Chinese Academy of Sciences at Shenzhen and a Fulbright Fellow at the American University of Armenia in Yerevan. He is a Life Fellow of IEEE for fundamental contributions to the performance analysis of computer systems. He was an Editor of IEEE Transactions on Parallel and Distributed Systems, a monograph on database concurrency control, and 150 papers, more recently on storage systems.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.