Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions.
Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors’ detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies.
Keith Worden, University of Sheffield, UK is Head of the Dynamics Research Group in the Department of Mechanical Engineering at the University of Sheffield. His research interests lie in the applications of advanced signal processing and machine learning methods to structural dynamics. He has authored over 400 research publications including two co-authored books on nonlinear structural dynamics and nonlinear system identification, two book chapters and over 130 refereed journal papers. He serves on the editorial boards of 2 international journals: Journal of Sound and Vibration and Mechanical Systems and Signal Processing. He was awarded "2004 Person of the Year" (jointly with W.J. Staszewski) awarded by Structural Health Monitoring journal for outstanding contribution in the field.