# Description

Now available in English for the first time,

Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as electrodynamics; fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics; elastic, thermoelastic, and viscoelastic mechanics; the kinetic theory of gases; special relativity; and quantum mechanics.

Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including the types and basic characteristics of the equations, the behavior of solutions, and some commonly used approaches to solving PDEs.

*Physics and Partial Differential Equations, Volume I*bridges physics and applied mathematics in a manner that is easily accessible to readers with an undergraduate-level background in these disciplines.Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as electrodynamics; fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics; elastic, thermoelastic, and viscoelastic mechanics; the kinetic theory of gases; special relativity; and quantum mechanics.

Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including the types and basic characteristics of the equations, the behavior of solutions, and some commonly used approaches to solving PDEs.

Each chapter can be read independently and includes exercises and references.