Unlocking Data with Generative AI and RAG: Enhance Generative AI Systems by Integrating Internal Data with Large Language Models Using RAG

· Packt Publishing Ltd
eBook
346
Pages

About this eBook

Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantage


Key Features

Optimize data retrieval and generation using vector databases

Boost decision-making and automate workflows with AI agents

Overcome common challenges in implementing real-world RAG systems

Purchase of the print or Kindle book includes a free PDF eBook



Book Description

Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes.

The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies.

By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique.


What you will learn

Understand RAG principles and their significance in generative AI

Integrate LLMs with internal data for enhanced operations

Master vectorization, vector databases, and vector search techniques

Develop skills in prompt engineering specific to RAG and design for precise AI responses

Familiarize yourself with AI agents' roles in facilitating sophisticated RAG applications

Overcome scalability, data quality, and integration issues

Discover strategies for optimizing data retrieval and AI interpretability


Who this book is for

This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Notebooks is required.


About the author

Keith Bourne is a senior Generative AI data scientist at Johnson & Johnson. He has over a decade of experience in machine learning and AI working across diverse projects in companies that range in size from start-ups to Fortune 500 companies. With an MBA from Babson College and a master's in applied data science from the University of Michigan, he has developed several sophisticated modular Generative AI platforms from the ground up, using numerous advanced techniques, including RAG, AI agents, and foundational model fine-tuning. Keith seeks to share his knowledge with a broader audience, aiming to demystify the complexities of RAG for organizations looking to leverage this promising technology.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.