Duality System in Applied Mechanics and Optimal Control

Advances in Mechanics and Mathematics

Book 5
Springer Science & Business Media
Free sample

A unified approach is proposed for applied mechanics and optimal control theory. The Hamilton system methodology in analytical mechanics is used for eigenvalue problems, vibration theory, gyroscopic systems, structural mechanics, wave-guide, LQ control, Kalman filter, robust control etc. All aspects are described in the same unified methodology. Numerical methods for all these problems are provided and given in meta-language, which can be implemented easily on the computer. Precise integration methods both for initial value problems and for two-point boundary value problems are proposed, which result in the numerical solutions of computer precision.
Key Features of the text include:
-Unified approach based on Hamilton duality system theory and symplectic mathematics. -Gyroscopic system vibration, eigenvalue problems.
-Canonical transformation applied to non-linear systems.
-Pseudo-excitation method for structural random vibrations.
-Precise integration of two-point boundary value problems.
-Wave propagation along wave-guides, scattering.
-Precise solution of Riccati differential equations.
-Kalman filtering.
-HINFINITY theory of control and filter.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Apr 11, 2006
Read more
Collapse
Pages
456
Read more
Collapse
ISBN
9781402078811
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Applied
Mathematics / Calculus
Mathematics / Functional Analysis
Mathematics / General
Science / Mechanics / Dynamics
Technology & Engineering / Mechanical
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book is based on lecture notes for a graduate course that has been offered at University of Nebraska-Lincoln on and off since 1998. The course is intended to provide graduate students with the basic aspects of the continuum modeling of electroelastic interactions in solids. A concise treatment of linear, nonlinear, static and dynamic theories and problems is presented. The emphasis is on formulation and understanding of problems useful in device applications rather than solution techniques of mathematical problems. The mathematics used in the book is minimal. The book is suitable for a one-semester graduate course on electroelasticity. It can also be used as a reference for researchers. I would like to take this opportunity to thank UNL for a Maude Hammond Fling Faculty Research Fellowship in 2003 for the preparation of the first draft of this book. I also wish to thank Ms. Deborah Derrick of the College of Engineering and Technology at UNL for editing assistance with the book, and Professor David Y. Gao of Virginia Polytechnic Institute and State University for recommending this book to Kluwer for publication in the series of Advances in Mechanics and Mathematics. JSY Lincoln, Nebraska 2004 Preface Electroelastic materials exhibit electromechanical coupling. They experience mechanical deformations when placed in an electric field, and become electrically polarized under mechanical loads. Strictly speaking, piezoelectricity refers to linear electromechanical couplings only.
This book is devoted to the basic variational principles of mechanics: the Lagrange-D'Alembert differential variational principle and the Hamilton integral variational principle. These two variational principles form the main subject of contemporary analytical mechanics, and from them the whole colossal corpus of classical dynamics can be deductively derived as a part of physical theory. In recent years students and researchers of engineering and physics have begun to realize the utility of variational principles and the vast possi bilities that they offer, and have applied them as a powerful tool for the study of linear and nonlinear problems in conservative and nonconservative dynamical systems. The present book has evolved from a series of lectures to graduate stu dents and researchers in engineering given by the authors at the Depart ment of Mechanics at the University of Novi Sad Serbia, and numerous foreign universities. The objective of the authors has been to acquaint the reader with the wide possibilities to apply variational principles in numerous problems of contemporary analytical mechanics, for example, the Noether theory for finding conservation laws of conservative and nonconservative dynamical systems, application of the Hamilton-Jacobi method and the field method suitable for nonconservative dynamical systems,the variational approach to the modern optimal control theory, the application of variational methods to stability and determining the optimal shape in the elastic rod theory, among others.
Not many disciplines can c1aim the richness of creative ideas that make up the subject of analytical mechanics. This is not surprising since the beginnings of analyti cal mechanics mark also the beginnings of the theoretical treatment of other physical sciences, and contributors to analytical mechanics have been many, inc1uding the most brilliant mathematicians and theoreticians in the history of mankind. As the foundation for theoretical physics and the associated branches of the engineering sciences, an adequate command of analytical mechanics is an essential tool for any engineer, physicist, and mathematician active in dynamics. A fascinating dis cipline, analytical mechanics is not only indispensable for the solution of certain mechanics problems but also contributes so effectively towards a fundamental under standing of the subject of mechanics and its applications. In analytical mechanics the fundamental laws are expressed in terms of work done and energy exchanged. The extensive use of mathematics is a consequence of the fact that in analytical mechanics problems can be expressed by variational State ments, thus giving rise to the employment of variational methods. Further it can be shown that the independent variables may be either displacements or impulses, thus providing in principle the possibility of two complementary formulations, i.e. a dis placement formulation and an impulse formulation, for each problem. This duality is an important characteristic of mechanics problems and is given special emphasis in the present book.
Both refining and extending previous publications by the authors, the material in this monograph has been class-tested in mathematical institutions throughout the world. Covering some of the key areas of optimal control theory (OCT), a rapidly expanding field that has developed to analyze the optimal behavior of a constrained process over time, the authors use new methods to set out a version of OCT’s more refined ‘maximum principle’ designed to solve the problem of constructing optimal control strategies for uncertain systems where some parameters are unknown. Known as a ‘min-max’ problem, this type of difficulty occurs frequently when dealing with finite uncertain sets.

The text begins with a standalone section that reviews classical optimal control theory, covering its principle topics of the maximum principle and dynamic programming and considering the important sub-problems of linear quadratic optimal control and time optimization. Moving on to examine the tent method in detail, the book then presents its core material, which is a more robust maximum principle for both deterministic and stochastic systems. The results obtained have applications in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games.

Key features and topics include:

* An examination of Crandall & Lions’ ‘viscosity solutions’ for non-smooth situations in optimal control

* A version of the tent method in Banach spaces

* How to apply the tent method to a generalization of the Kuhn-Tucker Theorem as well as the Lagrange Principle for infinite-dimensional spaces

* A detailed consideration of the min-max linear quadratic (LQ) control problem

* The application of obtained results from dynamic programming derivations to multi-model sliding mode control and multi-model differential games

* Two examples, dealing with production planning and reinsurance-dividend management, that illustrate the use of the robust maximum principle in stochastic systems

Using powerful new tools in optimal control theory, The Robust Maximum Principle explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control.

The IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, held in Trondheim July 3-7, 1995, was the eighth of a series of IUTAM sponsored symposia which focus on the application of stochastic methods in mechanics. The previous meetings took place in Coventry, UK (1972), Sout'hampton, UK (1976), FrankfurtjOder, Germany (1982), Stockholm, Sweden (1984), Innsbruckjlgls, Austria (1987), Turin, Italy (1991) and San Antonio, Texas (1993). The symposium provided an extraordinary opportunity for scholars to meet and discuss recent advances in stochastic mechanics. The participants represented a wide range of expertise, from pure theoreticians to people primarily oriented toward applications. A significant achievement of the symposium was the very extensive discussions taking place over the whole range from highly theoretical questions to practical engineering applications. Several presentations also clearly demonstrated the substantial progress that has been achieved in recent years in terms of developing and implement ing stochastic analysis techniques for mechanical engineering systems. This aspect was further underpinned by specially invited extended lectures on computational stochastic mechanics, engineering applications of stochastic mechanics, and nonlinear active control. The symposium also reflected the very active and high-quality research taking place in the field of stochastic stability. Ten presentations were given on this topic ofa total of47 papers. A main conclusion that can be drawn from the proceedings of this symposium is that stochastic mechanics as a subject has reached great depth and width in both methodology and applicability.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.