Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications

· Elsevier
Ebook
495
Pages
Eligible

About this ebook

Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. - Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists - Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials - Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices

About the author

Dr. Stephen E. Saddow is currently a Professor of Electrical Engineering and Medical Engineering, both departments in the College of Engineering at the University of South Florida (USF), Tampa. In 2020, he was appointed as a visiting researcher in the Molecular Imaging Branch, National Cancer Institute, Bethesda, MD to facilitate the development of SiC-based nanoparticles to treat deep tissue cancer using near-infrared photoimmunotherapy (NIR-PIT). He is also a visiting scientist in the Elettra synchrotron light source in Trieste, Italy (BEAR beamline). He was elected Fellow of the AIMBE and is a senior member of both the IEEE and National Academy of Inventors. His group has demonstrated the compatibility of SiC and graphene to numerous cell lines in vitro and to the central nervous system of wild-type mice to cubic SiC (3C-SiC) in vivo. Studies include the MRI compatibility of 3C-SiC for neural probe applications as well as the ability to noninvasively detect changes in patient glucose levels without the need of needles that require frequent swap-out. The hemocompatibility of 3C-SiC has been established leading to the demonstration that 3C-SiC passed all phases of ISO-10993 testing, which is necessary to secure FDA approval for human clinical trials. He holds several patents relating to SiC biomedical devices, such as implantable glucose sensors and neural implants. He has more than 150 publications on SiC materials and devices and has edited two books on this topic: 'Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications' (Elsevier, 2012) and 'Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition' (Elsevier, 2016). His research interests include the development of advanced biomedical devices for human healthcare applications where he works at the nexus of material and biological science to engineer long-term, in vivo medical devices based on silicon carbide and its derivatives.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.