Deep Learning for Numerical Applications with SAS presents deep learning concepts in SAS along with step-by-step techniques that allow you to easily reproduce the examples on your high-performance analytics systems. It also discusses the latest hardware innovations that can power your SAS programs: from many-core CPUs to GPUs to FPGAs to ASICs.
This book assumes the reader has no prior knowledge of high-performance computing, machine learning, or deep learning. It is intended for SAS developers who want to develop and run the fastest analytics. In addition to discovering the latest trends in hybrid architectures with GPUs and FPGAS, readers will learn how to
Henry Bequet is Director of High-Performance Computing and Machine Learning in the Financial Risk division of SAS. In that capacity, he leads the development of a high-performance solution that can run SAS code on thousands of CPU and GPU cores for advanced models that use techniques like Black-Scholes, Binomial Evaluation, and Monte-Carlo simulations. Henry has more than 35 years of industry experience and 15 years of high-performance analytics practice. He has published two books and several papers on server development and machine learning.