Design of Transient Protection Systems: Including Supercapacitor Based Design Approaches for Surge Protectors

· · ·
· Elsevier
電子書
282
頁數
符合資格

關於這本電子書

Design of Transient Protection Systems: Including Supercapacitor Based Design Approaches for Surge Protectors is the only reference to consider surge protection for end-user equipment. This book fills the gap between academia and industry, presenting new product development approaches, such as the supercapacitor assisted surge absorber (SCASA) technique. It discusses protecting gear for modern electronic systems and consumer electronics, while also addressing the chain of design, development, implementation, recent theory and practice of developing transient surge protection systems. In addition, it considers all relevant technical aspects of testing commercial surge protectors, advances in surge protection products, components, and the abilities of commercial supercapacitors. - Provides unique, patented techniques for transient protectors based on supercapacitors - Includes recent advances in surge protection - Links scattered information from within academia and industry with new product development approaches on surge protection for end-user equipment

關於作者

Nihal Kularatna is an Associate Professor in the School of Engineering at the University of Waikato, New Zealand. He won the New Zealand Innovator of the Year Award (2013). His electronic engineering career spans 45 years and he is currently active in research in supercapacitor applications, power converter topologies, and power conditioning. He has contributed to over 160 papers and authored nine books. Multiple patents were granted for his supercapacitor assisted (SCA) circuit topologies. Before migrating to New Zealand in 2002, he was the CEO of the Arthur C Clarke Institute in Sri Lanka.His 100 research contributions include papers in satellite remote sensing physics, computational neurodynamics, general anesthesia, EEG signal processing, supercapacitor applications, surge suppression, and rechargeable battery modeling. With Moira Steyn-Ross, he edited the 2010 Springer volume "Modeling Phase Transitions in the Brain." He has been an active researcher for 30 years, with particular interest in the physics and mathematics of nonlinear threshold phenomena.He has served Arthur C Clarke Institute for Modern Technologies for 10 years in different capacities, and he is a contributor to several patents on supercapacitor assisted techniques such as supercapacitor assisted low dropout regulator (SCALDO) and supercapacitor assisted surge absorber (SCASA). He is currently a PhD student at University of Waikato, working on the implementation aspects of SCASA technique, which is currently licenced to an Australian power quality products company. Jayathu Fernando holds BSc and MSc degrees from University of Colombo, and University of Moratuwa, respectively.He holds BE, MSc and PhD degrees from Bangalore University, University of Aberdeen, and University of Waikato, respectively. His PhD thesis was on Surge Propagation studies under the supervision of the first two authors of this work, and his MSc thesis was on Computer Simulation of DC-DC Switching Converter Systems. He has developed mathematical models for nonlinear surge protection devices and employed MATLAB-based numerical simulations to predict the incipient failure of electronics in transient voltage suppressor systems (TVSSs). He has also validated the numerical simulations experimentally using a lightning surge simulator. Sisira James has served Sri Lanka Telecom PLC as a senior telecommunications professional for more than 11 years.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。