Electron Correlations and Materials Properties

· ·
· Springer Science & Business Media
电子书
556

关于此电子书

Over the last thirty years or so, the attempts to identify the electronic origins of materials properties have proceeded along two distinct and apparently divergent methodologies. On the one-hand, so-called single-particle methods are based on the study of a single electron moving in an effective field formed by the other electrons and the nuclei in the system. Band theory, as this approach is referred to, has had impressive successes in determining the equilibrium properties, such as structural stability, volume, and charge densities, of specific materials, notably metals. Today, even coherent phase diagrams (based on a single underlying lattice) for binary metallic alloys can be studied with considerable accuracy. In spite of its serious and well-understood limitations regarding the handling of correlations, band theory has been embraced by the materials scientist. Its single-particle nature endows the method with an economy of concepts which leads to a clear identification of mechanisms driving physical behavior at the electronic level. This perceived clarity often tends to override legitimate concerns regarding the validity of the method or its ability to correctly identify the mechanisms in the first place. The alternative methodology pursued in the study of quantum systems consists of what can be referred to as conventional many-body theory. This methodology is based on attempts to study explicitly the effects of interparticle correlations using a number of different formal approaches, including but not limited to, perturbation methods, Green-function equation of motion methods, configuration interactions, quantum Monte Carlo, and others.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。