Conjugated Conducting Polymers

Springer Series in Solid-State Sciences

Book 102
Springer Science & Business Media
Free sample

This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
310
Read more
Collapse
ISBN
9783642467295
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Chemistry / Organic
Science / Physics / Electricity
Science / Physics / Electromagnetism
Science / Physics / Magnetism
Technology & Engineering / Materials Science / General
Technology & Engineering / Textiles & Polymers
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure.
The International Winter School on Electronic Properties of Polymers Orien tation and Dimensionality of Conjugated Systems, held March 9-16, 1991, in Kirchberg, ('lYrol) Austria, was a sequel to three meetings on similar subjects held there. The 1991 winter school was again organized in cooperation with the "Bundesministerium fUr Wissenschaft und Forschung" in Austria, and with the "Bundesministerium fUr Forschung und Technologie" in the Federal Republic of Germany. The basic idea of the meeting was to provide an opportunity for experienced scientists from universities and industry to discuss their most re cent results and for students and young scientists to become familiar with the present status of research and applications in the field. Like the previous winter schools on polymers, this one concentrated on the electronic structure and potential~ for application of polymers with conjugated double bonds. This time, however, special attention was paid to the effects of orientation and dimensionality. Anisotropy of the electric conductivity in stretch-oriented samples and whether the transport mechanisms are one-, two-, or three-dimensional or might even have a "fractal dimensionality" were there fore central topics. The problem of orientation was extended to systems such as Langmuir-Blodgett films and other layered structures. Accordingly, thin films were the focus of most of the application oriented contributions. Whereas in the previous winter schools discussions on applications dealt with "large volume applications" such as electromagnetic shielding and energy storage, this time "molecular materials for electronics" and prospects of "molecular electronics" were at the center of interest.
This book is a compilation of some fundamental properties of polymers, arranged alphabetically in one table. It should prove useful in practical applications of polymers and in the development of theories of polymer behavior. Much of the impetus for studies of new polymers derives from the desire to understand how molecular structure in fluences physical properties. A large quantity of data has been generated in pursuit of this goal, and certain consistent trends have been discovered. It is hoped that further progress in this area will be accelerated by bringing together the published data on polymers in this form. The physical properties listed were selected for the following reasons. Firstly, they are fundamental quantities from which other properties may be deduced. Secondly, they can be determined reproducibly in different laboratories, and finally, they have been reported for a sufficient number of polymers to justify inclusion. The table of polymers has been arranged so as to economize on space, to keep the size of the book within reasonable proportions, and to facilitate scanning. The device of inverting the names tends to group similar compounds to aid in searching. Because of the ease with which the table can be surveyed it was felt that supplementary indexes by melting point or glass temperature would be unnecessary. References are given to the literature cited, but unfortunately it is not possible to indicate the reference next to each datum without greatly expanding the size of the table.
At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.