Model Dermatol – Skin Disease

4.6
4.7K izibuyekezo
500K+
Okudawunilodiwe
Isilinganiselwa sokuqukethwe
Wonke umuntu
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini

Mayelana nalolu hlelo lokusebenza

I-Artificial intelligence isikenazithombe ezinikeziwe futhi isize ngokushesha ukusiza inkinga yesikhumba sakho. I-AI inikeza ulwazi olufanelekwezokwelapha ngezifo zesikhumba (isib., ukubonakala kwesikhumba, insumpa, isidleke) kanye nomdlavuza wesikhumba (isib., i-melanoma).

◉ Thatha izithombe zesikhumba bese uzihambisa. Izithombe ezisikiwe ziyadluliswa, kodwa asiyigcini idatha yakho.
◉ I-AI inikeza izixhumanisi kumawebhusayithi achaza izimpawu nezimpawu ezifanelekwezifo sesikhumba nomdlavuza wesikhumba (isib., i-melanoma).
◉ I-algorithm ingahlukanisa izithombe zezifo zesikhumba eziyi-186, okuhlanganisa izinhlobo ezivamile zokuphazamiseka kwesikhumba (isib., i-atopic dermatitis, i-hive, i-eczema, i-psoriasis, i-acne, i-rosacea, i-onychomycosis, i-melanoma, i-nevus).
◉ Ukusetshenziswa kwe-algorithm kumahhala kanye nezilimi eziyi-104 zisekelwe.

🞹 Ukushicilelwa
Sisebenzisa i-algorithm ethi "Model Dermatology". Ukusebenza komhleli kushicilelwe kumajenali wezokwelapha ahlonishwayo.
- Assessment of Deep Neural Networks for the Diagnosis of Benign and Malignant Skin Neoplasms in Comparison with Dermatologists: A Retrospective Validation Study. PLOS Medicine, 2020
- Performance of a deep neural network in teledermatology: a single center prospective diagnostic study. J Eur Acad Dermatol Venereol. 2020
- Keratinocytic Skin Cancer Detection on the Face using Region-based Convolutional Neural Network. JAMA Dermatol. 2019
- Seems to be low, but is it really poor? : Need for Cohort and Comparative studies to Clarify Performance of Deep Neural Networks. J Invest Dermatol. 2020
- Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. J Invest Dermatol. 2020
- Augment Intelligence Dermatology : Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J Invest Dermatol. 2020
- Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset. J Invest Dermatol. 2018
- Automated Dermatological Diagnosis: Hype or Reality? J Invest Dermatol. 2018
- Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018
- Augmenting the Accuracy of Trainee Doctors in Diagnosing Skin Lesions Suspected of Skin Neoplasms in a Real-World Setting: A Prospective Controlled Before and After Study. PLOS One, 2022
- Evaluation of Artificial Intelligence-assisted Diagnosis of Skin Neoplasms – a single-center, paralleled, unmasked, randomized controlled trial. J Invest Dermatol. 2022

🞹 Umshwana wokuzihlangula
- Sicela ufune iseluleko sikadokotela ngaphezu kokusebenzisa lolu hlelo lokusebenza nangaphambi kokwenza noma yiziphi izinqumo zezokwelapha.
- Ukuxilongwa komdlavuza wesikhumba noma ukuphazamiseka kwesikhumba okusekelwe kuphela ezithombeni zomtholampilo kungase kugeje kufikela ku-10% wamacala. Ngakho-ke, lolu hlelo lokusebenza alukwazi ukumiselela ukunakekelwa okujwayelekile (ukuhlolwa komuntu siqu).
- Ukubikezela kwe-algorithm akukona ukuxilongwa kokugcina komdlavuza wesikhumba noma ukuphazamiseka kwesikhumba. Isebenza kuphela ukuhlinzeka ngolwazi lwezokwelapha lomuntu siqu ukuze lusetshenziswe
Kubuyekezwe ngo-
Sep 3, 2025

Ukuphepha kwedatha

Ukuphepha kuqala ngokuqonda ukuthi onjiniyela baqoqa futhi babelane kanjani ngedatha yakho. Ubumfihlo bedatha nezinqubo zokuphepha zingahluka kuye ngokusebenzisa kwakho, isifunda, nobudala. Unjiniyela unikeze lolu lwazi futhi angalubuyekeza ngokuhamba kwesikhathi.
Ayikho idatha eyabiwe nezinkampani zangaphandle
Funda kabanzi mayelana nendlela onjiniyela abaveza ngayo ukwabelana
Ayikho idatha eqoqiwe
Funda kabanzi mayelana nokuthi onjiniyela bakuveza kanjani ukuqoqwa

Izilinganiso nezibuyekezo

4.6
4.62K izibuyekezo

Ukusekelwa kwe-app

Mayelana nonjiniyela
Iderma
iderm78@gmail.com
대한민국 서울특별시 양천구 양천구 목동동로 63(신정동, 대영프라자303호) 08093
+82 10-3465-0835

Izinhlelo zokusebenza ezifanayo